Social behavior is developed over the lifetime of an organism and the neuropeptide oxytocin (OXT) modulates social behaviors across vertebrate species, and is associated with neuro-developmental social deficits such as autism. However, whether OXT plays a role in the developmental maturation of neural systems that are necessary for social behavior remains poorly explored. We show that proper behavioral and neural response to social stimuli depends on a developmental process orchestrated by OXT neurons. Animals whose OXT system is ablated in early life show blunted neuronal and behavioral responses to social stimuli as well as wide ranging disruptions in the functional connectivity of the social brain. We provide a window into the mechanisms underlying OXT-dependent developmental processes that implement adult sociality.
Hypnotic susceptibility is a major factor influencing the study of the neural correlates of hypnosis using EEG. In this context, while its effects on the response to hypnotic suggestions are undisputed, less attention has been paid to “neutral …
Understanding how gene expression translates to and affects human behaviour is one of the ultimate goals of neuroscience. In this paper, we present a pipeline based on Mapper, a topological simplification tool, to analyze genes co-expression data. We …